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Abstract

It is proved that every nonempty set X has a chain of topologies with the cofinite
topology as its finest (maximum). For their semblance to, and yet differences from the
cofinite topology, these other topologies in the chain are called semi-cofinite topologies.
We proved that some of the semi-cofinite topologies in the chain are themselves the
maxima of yet other sequences of pair-wise comparable semi-cofinite topologies on the
nonempty set X. The cofinite topology lemma and the cofinite topology theorem are
stated and proved. The entire exposition climaxed into what we finally called the Branching
Theorem. The interesting meaning of the branching theorem is that every nonempty set
is-topologically speaking—a tree of many branches and sub-branches of topologies that
are pair-wise comparable.
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1. Introduction

Definition 1.1.: Let X be an infinite set and let

   :   cC A X A is finite . Then C is a topology on X, called the cofinite topology on X.

Remark: Some authors have defined cofinite topology in other ways. For example, in example 3 on page 77 of (James,
2000) we observe the following: “Let X be a set; let T

f
 be the collection of all subsets U of X such that X-U either is finite

or is all of X. Then T
f
  is a topology on X , called the finite complement topology.” One can also see (Seymour, 1965), page

66, for a seemingly different but same definition of cofinite topology. It has to be said here, though, that the meaning in
all these definitions are the same.

Some of the well-known properties of the cofinite topology C on a set X are as follows:

1. For an infinite set X, the complement of every C-open set (apart from the empty set) is finite—this is the actual
complement finite or co-finiteness property.
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2. If X is infinite, then C has infinitely many open sets.

3. If X is infinite, then C is not closed under arbitrary intersections.

4. There is one and only one cofinite topology C on a set X.

5. The cofinite topology C on a set X is always T
1
; indeed the cofinite topology is the strongest T

f
 -topology on any

set X.

The properties of a cofinite topology outlined above will soon be compared and contrasted with those of semi-
cofinite topologies defined and constructed below in the next section.

2. Main Results—Peak of a Sequence of Pair-Wise Comparable Topologies

Definition 2.1.: If a collection C
s 
of subsets of an infinite set X is such that C

s 
contains the empty set and that every

(other) set in C
s 
has finite complement, then C

s 
is called a semi-cofinite topology on X if it is a strictly weaker topology

than the cofinite topology on X.

The following are the properties against which each semi-cofinite topology, when constructed, will be checked.

1. The complement of every C
s
-open set (apart from the empty set) is finite.

2. If X is infinite, then C
s 
can have infinitely many open sets or only a finite number of open sets—depending on how

we choose to construct C
s
.

3. If X is infinite, C
s 
can be closed under arbitrary intersections, or not closed under arbitrary intersections—depending

on how C
s 
is constructed.

4. A set X can (and do often) have more than one semi-cofinite topology.

5. No semi-cofinite topology C
s 
on a set X is T

1
.

So, one main difference between a cofinite topology C and a semi-cofinite topology C
s 
is that C is always T

1 
and C

s

is never T
1
. And one special relationship between a cofinite topology C and a semi-cofinite topology C

s 
is that C

s 
is

always strictly weaker than C, on X. Last, but not the least, the cofinite topology C and each semi-cofinite topology C
s

have the co-finite or complement finite property in common. These differences and similarities necessitated the new
definition—for if only one topology has a name, then a very large class of other topologies related to the named
topology should have their name in autonomy.

Example 1:

Let N = {0, 1, 2, ...} denote the set of natural numbers. For each n  N let G
n 
be the set of all real numbers excluding the

first n natural numbers. Thus for instance

G
0 
= R – {} = R;

G
1 
= R – {0};

G
2 
= R – {0, 1}; G

3 
= R – {0, 1, 2};

...

G
n 
= R – {0, 1, 2, 3, ..., n – 1}

Let T
CN 

= {, G
n
}

n N

Then it is easy to see that

1. The empty set is in T
CN

, from the way T
CN 

is defined.

2. The whole set R of real numbers is in T
CN

.

3. The complement  of every set in T
CN

, apart from the empty set, is finite; precisely  contains the first n natural numbers.

4. And that T
CN 

is closed under finite intersections and arbitrary unions.

5. Hence T
CN 

is a topology on R, satisfying all but one property of the cofinite topology, on R, namely that it is not the
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family of all subsets of R whose complements are finite, together with the empty set. Hence T
CN 

is an example of what
we, in this article, call semi-cofinite topology, on the set R of real numbers. It is strictly weaker than the cofinite
topology on R.

We shall call T
CN 

the semi-cofinite topology on R generated by the set N of natural numbers. (Observe that the set
of natural numbers N can generate a semi-cofinite topology on R in a different way.)

Example 2:

Let Z = {0, 1, –1, 2, –2, 3, –3, ...} denote the set of all integers, arranged thus. For each n  N = {0, 1, 2, ...}, let G
n 
be R

without the first n integers under the arrangement thus made of Z. Hence for instance

G
0 
= R;

G
1 
= R – {0};

G
2 
= R – {0, 1};

G
3 
= R – {0, 1, –1};

G
4 
= R – {0, 1, –1, 2};

G
5 
= R – {0, 1, –1, 2, –2};

...

etc.

Then T
CZ 

= {, G
n
}

nN 
is a semi-cofinite topology (different from the one above) on R, as can easily be verified.

We observe that in T
CN

, G
2 
= R – {0, 1} and that in T

CZ
, G

2 
= R – {0, 1} also. However in T

CN
, G

3 
= R – {0, 1, 2} and in

T
CZ

, G
3 
= R – {0, 1, –1} and we see that though G

2 
is common to both T

CN 
and T

CZ
, G

3 
is not common to the two topologies

on R. It may further be verified that G
n 
is not common to the two topologies if n > 3. Hence these two topologies are not

comparable. But we can obtain two comparable semi-cofinite topologies on R based on the two subsets N and Z. Let Z
be written in the alternative (and usual) form Z = {..., –2, –1, 0, 1, 2, ...} and let G

n 
= R – {n integers } for each n  N = {0,

1, 2, ...}. That is, G
n 
is R without a finite number of whole numbers. We can also observe that the complement of each G

n

is a finite number of integers. This observation is helpful in proving that the family T
Z 

= {, G
n
}

nN 
is closed under

arbitrary unions; for if   ZG T 


 
is any family of sets in T

Z
, then cG   

is a finite number of integers, being an

intersection of finite sets of integers. It follows that:

 c
cG G 

  
 

is the set R of real numbers without n integers. Similarly we see that

1 1

cn n
c

i i
i i

G G
 

   
 

 

is the complement of a finite number of whole numbers in R. Hence T
Z 
is a semi-cofinite topology on R. And it is easy to

see that T
CN 

is strictly weaker than T
Z
. There are other ways of constructing strictly comparable pairs of semi-cofinite

topology on any infinite set. Later developments here will show that.

Example 3:

Let P = {p
1
, p

2
, p

3
, ...} be the ordered (ascendingly) set of all prime numbers, and R and N as earlier introduced. Let G

n

denote R without the first n prime numbers. Then T
CP 

= {, G
n
}

nN  
is yet another semi-cofinite topology on R, different

from the two introduced earlier.

Example 4:

Let Q = {q
1
, q

2 
,q

3
, ...} be the set of all rational numbers, and R and N as earlier introduced. Put G

n 
= R–{n rational

numbers}. Then T
CQ 

= {, G
n
}

nN 
is another semi-cofinite topology on R.
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Example 5:

Let Qc be the set of all irrational numbers, and R and N remain as introduced before. Put G
n 
= R – {n irrational numbers},

and let T
CQ

c
 
= {, G

n
}

nN
. Then  = is a semi-cofinite topology on R.

Example 6:

With R and N as earlier introduced, let G
n 
= R – {n real numbers }. Put T

CR 
= {, G

n
}

nN
. Then T

CR 
is the cofinite topology

on R.

Note: We observe that the topology constructed last above (i.e., example 6), T
CR

, is the family of all subsets of R whose
complements are finite, together with the empty set—hence only this topology is the cofinite topology on R. The
general method of constructing cofinite topologies supplied here can be used to construct cofinite topology on any
set. For example if we put N = R then example 1 will coincide with what is found in Seymour (1965). If N = R in example
6 we get the cofinite topology on N.

We have proved in the remarks following example 1 that all the constructions (1 to 6) are semi-cofinite topologies. It
has also been proved by other authors that the family constructed in definition 1 is indeed a topology on X. We provide
below an alternative, rigorous and particular proof that the family in example 6 is indeed the cofinite topology on the set
R of real numbers.

Proposition 2.1.: The family T
CR 

as constructed in example 6 is the cofinite topology on the set R of real numbers.

Proof: We only prove that T
CR

 is closed under finite intersections and arbitrary unions, since the remaining two
properties of a (cofinite) topology are easily seen to be satisfied by T

CR
; we also note that T

CR
 is a T

1
-space (property of

all cofinite topologies) as singletons are T
CR

-closed subsets of R. We recall that

G
0
 = R;

G
1
 = R – {r

11
};

G
2
 = R – {r

21
, r

22
};

G
3
 = R – {r

31
, r

32
, r

33
};

G
4
 = R – {r

41
, r

42
, r

43
, r

44
};

G
n
 = R – {r

n1
, r

n2
, r

n3
, ..., r

nn
}; where r

ni
  R.

Now let   1 2 31 1
, , , ,

n n

k k k k kkk k
N G R r r r r

 
    

 1 2 31
, , , ,

n

k k k kkk
R r r r r


  

 Hence the complement N
c
 of N is  1 2 31

, , , ,
nc

k k k kkk
N r r r r


  , a finite union of finite sets; and so it must be

finite.

Alternatively we can consider directly the cardinality of Nc. Card (Nc) is such that Card

   1
1 2 3

2
c n n

N n


        . (The numbers 1, 2, 3, ..., n added represent the cardinalities of the complements

of the G
k
, for k = 1, 2, ..., n) So Nc is finite, implying that T

CR
 is closed under finite intersections.

Now let      , 1, , , 1, ,m t m m t m m t miU G G R r i m R r i m                

Hence the complement of U is     , 1, , , 1,c
m t mi tiU r i m r i t      . Hence Card (Uc) < t <  , implying

that T
CR

 is also closed under arbitrary unions.

2.1. Observations

We have said that the topologies T
CN

 and T
CZ

 (in examples 1 and 2) are not comparable, from the observation that G
3
 in
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T
CN

 is G
3
 = R – {0, 1, 2} while in T

CZ
, G

3
 = R – {0, 1, –1}. Hence G

3
 in T

CN
 is not the same as G

3
 in T

CZ
. If we denote G

n
 in

T
CN

 by T
CN

(G
n
), and G

n
 in T

CZ
 by T

CZ
(G

n
) then it is easy to see that T

CN
(G

n
)   T

CZ
 if n  N and n > 3; and conversely, T

CZ
(G

n
)

  T
CN

 if n  N and n > 3, though T
CN

(G
n
) = T

CZ
(G

n
) if n = 0, 1, 2.

However, if we define G
n
 in T

CN
 by G

n
 = R – {n natural numbers}, and define G

n
 in T

CZ
 by G

n
 = R – {n whole numbers},

then it would be seen that, since the set N of natural numbers is a subset of the set Z of integers, the collection T
CN

 of
the set of real numbers without some natural numbers is a sub-collection of the collection T

CZ
 of R without some

integers. Hence the semi-cofinite topology T
CN

 on R (this time) is strictly weaker than the semi-cofinite topology T
CZ

 on
R. That is, T

CN
 < T

CZ
. Similarly T

CP
 < T

CZ
, and T

CZ
 < T

CQ
. And all the five semi-cofinite topologies, on R, above can be

summarized as follows:

1. T
CN

 < T
CZ

 < T
CQ

 < T
CR

;

2. T
CP

 < T
CZ

 < T
CQ

 < T
CR

;

3. T
CQ

c = < T
CR

; and

4. T
CP

 < T
CN

.

The procedure for constructing the semi-cofinite topologies on R, above, can be applied to any infinite set and
summaries similar to 1 to 4 can be put under a lemma as follows:

Lemma 2.1 (The Cofinite Topology Lemma): Let A and B be two infinite subsets of an infinite set X such that A  B
(where A is a proper subset of B). Then there exist semi-cofinite topologies T

CA
 and T

CB
, on X, induced respectively by

A and B such that T
CA

 < T
CB

; that is, T
CA

 is strictly weaker than T
CB

.

Example 7:

Let X be an infinite set and let B = X – {x
1
} and A = B – {x

2
} = X – {x

1
, x

2
}. Then A is an infinite and proper subset of B,

and (W.L.O.G) B is an infinite and proper subset of X. Let

G
0
 = X – {} = X;

G
1
 = B = G

0
 – {x

1
}   X – {x

1
};

G
2
 = A = G

1
 – {x

2
} = B – {x

2
}   X – {x

1
, x

2
};

G
3
 = G

2 
– {x

3
} = A – {x

3
} = G

1 
– {x

2
, x

3
} = B – {x

2
, x

3
}   X – {x

1
, x

2
, x

3
};

G
4
 = G

3
 – {x4}

= G
2
 – {x

3
, x

4
}

= G
1
 – {x

2
, x

3
, x

4
}

= G
0
 – {x

1
, x

2
, x

3
, x

4
}

And so on,

G
n
 = G

0
 – {x

1
, x

2
, ..., x

n
} = X – {x

1
, x

2
, ..., x

n
}.

Let T
CA

 = {, G
0
, G

2
, G

3
, ..., G

n
, ...}. Then T

CA
 is a semi-cofinite topology on X. Let T

CB
 = {, G

n
}

nN
. Then T

CB
 is another

semi-cofinite topology on X. And we see that T
CA

 is a strictly weaker topology than T
CB

 on X since G
1
  T

CB
 and G

1
 

T
CA

 and every T
CA

-open set is T
CB

-open.

We also see that the open sets of both semi-cofinite topologies satisfy the inclusions

···  G
3
  G

2
  G

0
 = X, for T

CA
;

and

···  G
3
  G

2
  G

1
  G

0
 = X, for T

CB
.

Hence both semi-cofinite topologies are closed under arbitrary intersections, making them complement topologies.1

Finally, we remark that one must not follow the process of construction used here to have two comparable semi-cofinite

1 Complement topology is an idea originated by the authors in one of their publications in 2017. See (Chika and Alexander, 2017).
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topologies induced on X by A and B. For example we could have used procedures exactly similar to those used in
examples 4 and 5, and still have T

CA
 to be strictly weaker than T

CB
—only that this time the semi-cofinite topologies may

not be closed under arbitrary intersections.

Let C
N
 and C

Z
 be respectively the cofinite topology on N and Z. Let T

N
 = C

N
 {Z}{R} and T

Z
 = C

Z
 {R}. Then,

by subset-induced topologies, both T
N
 and T

Z
 are topologies on R and T

N
 is strictly weaker than T

Z
.

Finally, we observe that these two topologies are semi-cofinite topologies on R.

Remark: We know that every infinite set, say X = {x
1
, x

2
, x

3
, ...}, has an infinite proper subset, say X

1
 = {x

1
, x

2
, x

3
, ...}.

From the cofinite topology lemma, above, we can construct (or there exists) a semi-cofinite topology 
1CXT  on X, and T

CX
,

such that T
CX

 > 
1CXT . Since X

1
 is itself infinite, it has an infinite proper subset, say X

2
. By the cofinite topology lemma

again, there exists a semi-cofinite topology 
2CXT  on X such that 

1 2CX CX CXT T T  . The reasoning can continue like that,

and what we have proved is the following:

Theorem 2.1. (Cofinite Topology Theorem): Let X be any infinite set. There exists a sequence {
1
, 

2
, 

3
, ...} of

topologies on X, forming a chain in that

C = T
CX

 > 
1
 > 

2
 > 

3
 > ···

where C = T
CX

 is the cofinite topology on X.

Further research may now be geared towards finding other topologies that may exist between or at the extreme ends
of this chain.

3. Main Results-The Branching Theorem

Definition 3.1.: A topology is called a chain-element topology if it is an element of a family of topologies that form a
(decreasing or increasing) chain on a set.

Note: One implication of the cofinite topology theorem is that every infinite set has infinitely many semi-cofinite
topologies. The other implication is that an infinity of semi-cofinite topologies on any infinite set can be constructed to
form a chain, on the top of which sits the cofinite topology of the set.

We observe that each of the semi-cofinite topologies so far constructed here has an infinite number of open sets.
However, we also have to point out that they alone are not the only semi-cofinite topologies: there are some semi-
cofinite topologies with only finitely many open sets. In fact, each of the chain element semi-cofinite topologies with
infinite number of open sets can be shown to be (themselves) the limit of an increasing sequence of pair-wise comparable
semi-cofinite topologies with finite numbers of open sets.

Example 8:

Let us take another look at example 1, the semi-cofinite topology T
CN

 on R generated by the set of natural numbers. If we
serially collect finite numbers of open sets of T

CN
, we shall get an increasing sequence of semi-cofinite topologies on R

forming a chain at the top of which sits T
CN

. To see this, we go as usual and let

G
0
 = R – {} = R;

G
1
 = R – {0}.

Then 
1
 = {, G

0
, G

1
} is a semi-cofinite topology, on R, strictly weaker than T

CN
.

Let G
2
 = R – {0, 1}. Then, with G

0
 and G

1
 as earlier defined, 

2
 = {, G

0
, G

1
, G

2
} is yet another (semi-cofinite) topology,

strictly weaker than T
CN

, on R.

Continuing like that, with G
n
 = R – {0, 1, 2, ..., n–1} and G

i
 (1 <  i < n–1) as earlier defined, we see that 

n
 = {, G

k
:k =

0, 1, ..., n}  is a (semi-cofinite) topology on R, strictly weaker than T
CN

.

We finally observe that 
1
 is strictly weaker than 

2
, and 

2
 is strictly weaker than 

3
, and so on. That is
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1
 < 

2
 < 

3
 < ··· < T

CN
,

where T
CN

 is as earlier introduced in example 1. That is, some semi-cofinite topologies can branch out into the limit of
another sequence of pair-wise comparable topologies. Since each of the chain element topologies (

n
 on X) in the

cofinite topology theorem is induced on X by an infinite set, X
n
, each of these semi-cofinite topologies can be made to

sit at the top of yet another sequence of pair-wise comparable topologies. For example, if 
n
 is induced on X by X

n
, let

inX  be X
n
 without i elements (where i N). That is, 

1nX  = X
n
 – {x

1
}, where x

1
  X

n
;  

2 1 2n nX X x  , where x
2
 

1nX ;

and so on. We see that 
1 2n n nX X X   . It follows from the cofinite topology lemma that the semi-cofinite topology

1n
CXT on X is strictly weaker than 

2
;

n nCX n CXT T  is strictly weaker than 
1n

CXT ; 
3nCXT is strictly weaker than 

2nCXT ; and so

on.

That is

 
3 2 1

, *
n n n nCX CX CX CX n CXT T T T T C       

where C is the cofinite topology on X.

That is, the topology 
n
 on X, induced by the subset X

n
 of X, sits at the top of a chain of pair-wise comparable

topologies. Each 
inX , subset of X

n
, induces the topology ni

XT on X, strictly weaker than 
n
, as seen in (*). By a process

similar to what has been used to generate (*), under 
n
, we can have another chain

  
1

ni j
X

j

H T





of topologies on X, pair-wise comparable, and such that each ni j
XT is strictly weaker than ni

XT . The process can

continue for each of the (infinite) subsets 
inX  (i = 1, 2, 3, ..., and n = 1, 2, 3, ...) of X—and their own subsets. What we

have proved is the following.

Theorem 3.1. (Branching): Each of the chain element topologies under the cofinite topology theorem is itself at the
peak of yet another chain of (semi-cofinite) topologies. If the original set X is infinite, then this branching will be
endless; if X is finite, the branching will terminate.

For example each of the semi-cofinite topologies 3 to 7 above, on R, is the limit of a sequence of pair-wise comparable
monotone increasing semi-cofinite topologies.

Example 9:

We may again let G
0
 = N = {0, 1, 2, ...};

G
1
 = N – {0} = {1, 2, 3, ...}.

Then 
1
 = {, G

0
, G

1
} is a (semi-cofinite) topology on the set N of natural numbers. If we also let

G
0
 = N, G

1
 = N – {0}, G

2
 = N – {0, 1} = {2, 3, 4, ...},

then 
2
 = {, G

0
, G

1
, G

2
} is another topology, strictly stronger than 

1
, on N. If we continue like that, for each n  N

then

  0
,

n

n k k
G 




is a semi-cofinite topology on N, strictly stronger than 
n–1

. We then see that the family  1 1n n
H  


 of topologies on N

form an increasing chain of topologies, on N, at which peak lies the cofinite topology on N. We note that each chain

element of H
1
 has only finitely many open sets. This is to be contrasted with  2 1n n

H  


  whose elements

1 2 31 2 3, , ,CX CX CXT T T      , have each infinitely many open sets, where X
1
 = N – {0} = {1, 2, 3, ...}, X

2
 = N – {0, 1}
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= {2, 3, 4, ...}, etc., and the topologies 
1 2 31 2 3, , ,CX CX CXT T T       are constructed according to the remark in

Lemma 2.1.

3.1. Finite Sets

Since the complement of every subset of a finite set is finite, any search for subsets of a finite set whose complements
are finite is not an interesting exercise. Hence we do not often talk about cofinite topologies on finite sets. However if
X is finite, then 2X the power set of X is the cofinite topology on X since it satisfies the definition of cofinite topology.
Also if X is finite, say X = {x

1
, x

2
, x

3
, ..., x

n
}, then we have some semi-cofinite topologies on X, forming a chain also. These

semi-cofinite topologies can be constructed as follows:

Let G
0
 = X; G

1
 = X – {x

1
}. Then 

1
 = {, G

0
, G

1
} is a semi-cofinite topology on X.

Let G
2
 = X – {x

1
, x

2
}. Then 

2
 = {, G

k
:k = 0, 1, 2}, where G

0
, G

1
 are as earlier defined, is another semi-cofinite topology

on X, strictly stronger than 
1
. With G

3
 = X – {x

1
, x

2
, x

3
}, we see that  3

3 0k k
G 


   is another semi cofinite topology,,

strictly stronger than 
2
.

Continuing like that, with G
n
 = X – {x

1
, x

2
, x

3
, ..., x

n
} = , we see that   0

n

n k k
G 


   is a topology, strictly stronger

than 
n–1

. That is

   0

n

n k k
G  


  

is a topology on X, stronger than all the other ones. So, we have a finite sequence   1

n

k k



 of topologies on X forming

a chain in that


n
 > 

n–1
 > ··· > 

1
,

and the power set 2X of X, or its cofinite topology, is at the top of this finite sequence of topologies.

4. Conclusion and Summary

1. It is proved that every nonempty set X has a chain of topologies with the cofinite topology as its finest. We called
these other topologies in the chain semi-cofinite topologies.

2. We proved that some of the semi-cofinite topologies in the chain are themselves the maxima of yet other sequences
of pair-wise comparable semi-cofinite topologies on the nonempty set X.

3. The cofinite topology lemma and the cofinite topology theorem were stated and proved.

4. We stated and proved the Branching Theorem; and the implication of this theorem is that every nonempty set X is—
topologically speaking—a tree of many branches and sub-branches of topologies that are pair-wise comparable.

5. For an infinite set, the branches and sub-branches of the tree of topologies can be endless; or be made to be finite.

6. Ample examples are given at appropriate places to clearly illustrate the theorems being developed.
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